Questions taken from the AQA Practice Paper 1 Set 1 (AS)

Question	2	3	6	7	8	9	10	11	13	15	Total
Marks											
Max Marks	1	5	6	11	9	7	1	1	6	4	51

SPEND ABOUT AN HOUR ON THE QUESTIONS THEN CHECK AND CORRECT YOUR ANSWERS USING THE MARK SCHEME

The lines $y = \frac{a}{3}x - 4$ and $y = 3 - \frac{b}{4}x$ are perpendicular.

Find the value of ab.

Circle your answer.

[1 mark]

$$\frac{3}{4}$$
 -12 $-\frac{4}{3}$ 12

- 3 The curve, C, has equation $y = 2x^2 + 5x + k$. The minimum value of C is $-\frac{3}{4}$
- 3 (a) Find the value of k.

[4 marks]

3 (b) The curve C is translated by $\begin{pmatrix} 1 \\ d \end{pmatrix}$ to obtain the curve C'

The curve C' touches the x-axis.

State the value of d.

[1 mark]

6
$$f(x) = \frac{1 - 2x^9}{x^5}$$
 for $x > 0$

Prove that f(x) is a decreasing function.

[6 marks]

YEAR 1 | MATHEMATICS | WEEK 18 EXAM QUESTIONS

- A curve has equation $x^2 + y^2 + 12x = 64$ A line has equation y = mx + 10
- 7 (a) (i) In the case that the line intersects the curve at two distinct points, show that

$$(20m+12)^2-144(m^2+1)>0$$

[4 marks]

7 (a) (ii) Hence find the possible values of m.

[2 marks]

7 (b) (i) On the same diagram, sketch the curve and the line in the case when m=0

[4 marks]

7 (b) (ii) State the relationship between the curve and the line.

[1 mark]

8 (x-3) is a common factor of f(x) and g(x) where:

$$f(x) = 2x^3 - 11x^2 + (p-15)x + q$$

$$g(x) = 2x^3 - 17x^2 + px + 2q$$

8 (a) (i) Show that 3p + q = 90 and 3p + 2q = 99Fully justify your answer.

[4 marks]

8 (a) (ii) Hence find the values of p and q.

[1 mark]

8 (b) h(x) = f(x) + g(x)

Using your values of p and q, fully factorise h(x)

[4 marks]

YEAR 1 | MATHEMATICS | WEEK 18 EXAM QUESTIONS

9 Martin tried to find all the solutions of $4\sin^2\theta\cos^2\theta - \cos^2\theta = 0$ for $0^\circ \le \theta \le 360^\circ$ His working is shown below:

$$4\sin^{2}\theta\cos^{2}\theta - \cos^{2}\theta = 0$$

$$\Rightarrow 4\sin^{2}\theta\cos^{2}\theta = \cos^{2}\theta$$

$$\Rightarrow 4\sin^{2}\theta = 1$$

$$\Rightarrow \sin^{2}\theta = \frac{1}{4}$$

$$\Rightarrow \sin\theta = \frac{1}{2}$$

$$\Rightarrow \theta = 30^{\circ}, 150^{\circ}$$

Martin did not find all the correct solutions because he made two errors.

9 (a) Identify the two errors and explain the consequence of each error.

[4 marks]

9 (b) Find all the solutions that Martin did not find.

[3 marks]

10 A block is at rest on a horizontal playground. The normal reaction force acting on the block has magnitude 400 N.

Find the approximate mass of the block.

Circle your answer.

[1 mark]

4 kg

40 kg

400 kg

4000 kg

11 A car travels 2.4 km in 6 minutes.

Find the average speed of the car.

Circle your answer.

[1 mark]

0.4 m s⁻¹ 6.67 m s⁻¹

 24 m s^{-1}

 400 m s^{-1}

YEAR 1 | MATHEMATICS | WEEK 18 EXAM QUESTIONS

13	A toy train travels on a straight track, of length 11 metres.
	It is initially at rest with the back of the train at one end of the track.
	It accelerates uniformly for 8 seconds and reaches a speed of 2 m s ⁻¹ .
	It then travels at this speed until it reaches the end of the track.

13 (a) Sketch a velocity-time graph for the train.

[2 marks]

13 (b) Find the time it takes the train to reach the end of the track.

[2 marks]

13 (c) (i) Describe how the model that you have used could be refined.

[1 mark]

13 (c) (ii) Explain how your refinement would affect your answer to part (b).

[1 mark]

15 In this question use $g = 9.8 \text{ m s}^{-2}$.

A crate of mass 19 kg is attached to a cable, which is used to lift the crate vertically. The tension in the cable is 204 N.

15 (a) Assuming that there is no air resistance on the crate, find the acceleration of the crate.

[3 marks]

15 (b) In reality, there is air resistance on the crate.

State what can be deduced about the acceleration when the effect of air resistance is considered.

[1 mark]